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1. INTRODUCTION

Recently, there has been much interest in the study of rates of polyno-
mial approximation in weighted Lp (0<p��) spaces, associated with fast
decaying weights on the real line and [&1, 1]. We refer the reader to
[1, 4, 7] and the references cited therein, for a detailed and comprehensive
account of the above topic.

In this paper, we consider smoothness theorems in Lp (0<p��) for
weighted polynomials associated with Erdo� s weights on the real line com-
plementing earlier work of [1, 2], and [4]. In order to state our results,
we need to define our class of weight functions and various quantities. First
we say that a real valued function f: (a, b) � (0, �) is quasi-increasing if
there exists a positive constant C such that

a<x< y<b O f (x)�Cf ( y).

Our weight class will be assumed to be admissible in the sense of the
following definition.
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Definition 1.1. Let

W=exp(&Q),

where Q: R � R is even and continuous. Then W is an admissible weight
and we shall write W # E if the following conditions below hold.

(a) xQ$(x) is strictly increasing in (0, �) with

lim
|x| � 0+

xQ$(x)=0.

(b)

T (x) :=
xQ$(x)
Q(x)

is quasi-increasing in (C, �) for some C>0 and

lim
|x| � �

xQ$(x)
Q(x)

=�.

(c) Assume that for each =>0, there exists Cj>0, j=1, 2 such that

yQ$( y)
xQ$(x)

�C1 \Q( y)
Q(x)+

1+=

, y�x�C2 . (1.1)

It is instructive to present two classical examples of our admissible
weights below.

(a)

Wk, : (x) :=exp(&expk ( |x|:)), :>1, k�1, x # R. (1.2)

Here expk (; ) :=exp(exp( } } } (exp(; ))) denotes the kth iterated exponential.

(b)

WA, B(x) :=exp(&exp(log(A+x2)B)), x # R. (1.3)

Here B>1 and A is a fixed but large enough real number.

Armed with the above class of admissible weights above, we now define
a suitable measure of weighted distance.

Let I�R be an interval and

Lp, W (I ) :=[ f : I � R : fW # Lp (I ), 0<p��],
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where if p=�, f is further continuous and satisfies

lim
|x| � �

fW(x)=0.

We equip Lp, W (I ) with the quasi-norm

{\|I
| fW | p (x) dx+

1�p

, 0< p<�

sup
x # I

| fW | (x), p=�

and interpret (Lp, W (I ), & ; &) as a metric space in the usual way. In par-
ticular, taking I=R, we may define the Lp (0<p��) error in best
weighted polynomial approximation by

En[ f ]W, p := inf
P # Pn

&( f &P) W&Lp (R) , f # Lp, W (R), (1.4)

where Pn denotes the class of polynomials of degree at most n�1.
In [1] and [4], Jackson and Bernstein estimates for En[ f ] for fixed

f # Lp, W (0<p��) were investigated. In order to describe these results, we
need the notion of the Mhaskar�Rakhmanov�Saff number and a suitable
weighted modulus of smoothness which we define below.

Mhaskar�Rakhmanov�Saff Number

Let W # E and define the Mhaskar�Rakhmanov�Saff number, au , u�0,
by the equation:

u=
2
? |

1

0

au tQ$(au t)

- 1&t2
dt, u>0.

Then under our assumptions on Q, it was shown in [4] that au is uniquely
defined and is a strictly increasing function of u. Moreover, it is continuous
for u # (0, �) and satisfies for every fixed $>0

au

u$ � 0, u � �. (1.5)

The Weighted Jackson Modulus of Continuity

The following weighted Jackson modulus of continuity was introduced
and studied in [1, 2], and [4].
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Definition 1.2. Let W # E, 0<p��, f # Lp, W (R), r�1 and set

|r, p ( f, W, t) := sup
0<h�t

&2r
h8t(x)( f, x, R)&Lp ( |x| �_(2t))

= inf
R # Pr&1

&( f &R) W&Lp ( |x| �_(4t)) . (1.6)

Here

(a)

_(t) :=inf {au :
au

u
�t= , t>0. (1.7)

(b)

8t (x) := } 1&
|x|

_(t) }
1�2

+T (_(t))&1�2, x # R. (1.8)

For a real interval J,

2r
h( f, x, J) :={ :

r

i=0

(r�i)(&1) i f (x+(rh�2)&ih), x\
rh
2

# J

0, otherwise

is the r th symmetric difference of f.

The following remark assists in the assimilation of the complicated ter-
minology above.

Remark 1.3. (a) The essential feature of the function _ in (1.7) is that
it satisfies the following important condition. Uniformly for n�1, there
exist constants Cj>0, j=1, 2 independent of n such that

C1�
_(an �n)

an
�C2 .

Thus, in a sense, _(an �n) serves as the inverse of the function

an : �
an

n
, n�1.

Typically, t is small and will be taken as an �n for n�n0 for some fixed but
large enough n0 .

(b) The function 8t is a suitable replacement for the well-known
factor - 1&x2 in the Ditzian�Totik modulus, i.e., it describes the improve-
ment in the degree of approximation near \an�2 .
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(c) The tail of the modulus |r, p ( f, W, ; ) reflects the inability of
(PW ), P # Pn to approximate beyond [&an�2 , an�2]. Its presence ensures
that for f # Pr&1 , r�1,

|r, p ( f, W, ; )#0. (1.9)

We finish this section with two important theorems which were estab-
lished in [1] and [4]. In order to state them, we adopt the following con-
vention that will be used in the sequel.

Throughout, for real sequences [An] and [Bn]{0,

An=O(Bn), An tBn and An=o(Bn) will mean respectively that
there exist constants C1 , C2 , C3>0 independent of n such that
An �Bn�C1 , C2�An �Bn�C3 and limn � � |An �Bn |=0.

Similar notation will be used for functions and sequences of functions.

Theorem 1.4. Let W # E, 0<p��, f # Lp, W (R), r�1 and n�n0 .
Assume that there is a Markov�Bernstein inequality of the form

&R$8an�nW&Lp (R)�C1

n
an

&RW&Lp (R) , R # Pn . (1.10)

Then there exists C2>0 independent of f and n such that

En[ f ]W, p�C2wr, p \ f, W,
an

n + . (1.11)

The result indicated a Nikolskii�Timan�Brudnyi effect whereby as in
weights on [&1, 1], we have better approximation towards the endpoints
of the Mhaskar�Rakhmanov�Saff interval.

In order to establish (1.11), we used a natural realization functional
defined by

Kr, p ( f, W, tr) := inf
P # Pn

[&( f &P) W&Lp (R)+tr &P(r)8 r
t W&Lp (R)]. (1.12)

Here t>0 is chosen in advance and n depends on t by the following
relation:

n=n(t) :=inf {k :
ak

k
�t= . (1.13)

The concept of realization should be attributed to Hristov and Ivanov
[6]. It enabled us to use a general technique of Ditzian, Hristov, and
Ivanov [6] to show
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Theorem 1.5. Let W # E, 0<p��, f # Lp, W (R), r�1, :>0 and
assume (1.10). Let t # (0, D) where D is a small enough fixed positive number
and determine n by (1.13). Then uniformly for f and t the following hold.

(a)

|r, p ( f, W, t)tKr, p ( f, W, tr). (1.14)

(b)

|r, p ( f, W, t)t|r, p ( f, W, :t)t|r, p \f, W,
an

n + . (1.15)

(c)

Kr, p ( f, W, tr)t&( f &Pn*) W&Lp(R)+tr &Pn*
(r)8 r

t W&Lp (R) . (1.16)

Here, P*n, p=Pn* is the best aproximant to f from Pn satisfying

&( f &Pn*) W&Lp (R)=En[ f ]W, p . (1.17)

(d) Moreover if 1�p�� and f satisfies the extra smoothness
requirement

f rW # Lp (R)

then there exists C1>0 independent of t and f such that

|r, p ( f, W, t)�C1 tr & f (r)W&Lp (R) . (1.18)

This paper is organized as follows: In Section 2, we present our main
results. In Section 3, we establish Theorems 2.1 and 2.3. In Section 4, we
present the proofs of Theorems 2.6, 2.7, 2.9, and 2.10.

2. STATEMENTS OF RESULTS

Throughout this paper, C, C1 , ... will denote positive constants indepen-
dent of t, n, x and P # Pn while the symbol D will always denote a small
enough but fixed positive constant. The same symbol does not necessarily
denote the same constant in different occurrences. We shall write C{C(L)
to mean that the constant in question is independent of the parameter L.
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2.1. A Smoothness Inequality in Lp , p�1

In general, the constants in the t relation in (1.15) depend on : and
one has typically for the modulus |r ( f, ; )p of [8] the inequality

|r ( f, *t)p�C1*r|r ( f, t)p

for *�1 and p�1. Here C1>0 is independent of f, t, and *.
In this paper we prove

Theorem 2.1. Let W # E, 1�p��, f # Lp, W (R), r�1, and t # (0, D).
Then uniformly for * # [1, D�t], there exists C1>0 independent of f and t
such that

wr, p ( f, W, *t)�C1 *r (sup
x # R

9*t, t (x))r wr, p ( f, W, t), (2.1)

where for any y, z>0

9y, z(x) :=
8y (x)
8z(x)

, x # R. (2.2)

In particular, given =>0, we have for 0<t<D and uniformly for
* # [1, D�t],

wr, p ( f, W, *t)�C2 *r+=wr, p ( f, W, t). (2.3)

Here, C2 is independent of t, f, and *.

Remark 2.2. One can prove, under the hypotheses of Theroem 2.1 the
following infinite-finite range inequality:

Let :>1, ; # R and 0<t<D. Define n=n(t) by (1.13). Then for all
P # Pn and uniformly for *�1,

&PW8;
*t&Lp (R)�C1 &PW8;

*t &Lp ( |x|�_(t�4:)) .

This enables us to replace

sup
x # R

9*t, t (x)

in (2.1) by

max
|x|�_(t�4:)

9*t, t (x).
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However, as the proof of Lemma 3.2 will show, the main contribution of
9*t, t (x) comes from the interval

_ \*t
4:+�|x|�_ \ t

4:+
so this replacement still yields (2.3) and is hardly worth the effort.

As a corollary, of the above, we are able to prove the following satura-
tion type result complementing (1.9).

Theorem 2.3. Let W # E, 1�p��, f # Lp, W (R) and r�1. Suppose
that for a given =>0,

lim inf
t � 0+

|r, p ( f, W, t)
tr+= =0. (2.4)

Then f is a polynomial of degree r&1 a.e.

Remark 2.4. We observe that (2.4) is false for 0<p<1.
Indeed set

f (x) :={0,
xr&1,

x # (&1, 0)
x # (0, 1).

Then f # Lp , p>1, f is of compact support and

|r ( f, t) := sup
0<h�t

&2r
h( f )&Lp (&1, 1)=O(tr&1+1�p).

As f is of compact support,

|r ( f, t)t|r, p ( f, W, t).

It remains to observe that a polynomial of degree r&1 of compact support
#0.

2.2. A Characterization Theorem

In order to formulate our next two results, we need the following charac-
terization theorem which was proved in [1].

Theorem 2.5. Let W # E, 0<:<r, 0<p��, f # Lp, W (R) and assume
(1.10).

Then the following are equivalent.
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(a)

En[ f ]W, p=O \an

n +
:

, n � �. (2.5)

(b)

|r, p ( f, W, t)=O(t:), t � 0+. (2.6)

Observe that Theorem 2.5 does not include the case :=r. To this end,
we replace (2.5) by a different characterization and prove:

Theorem 2.6. Let W # E, 1�p��, f # Lp, W (R) and assume (1.10).
Suppose further that

&Pn*
(r) 8r

an�nW&Lp (R)�C1 \ n
an+

r

� \an

n + , n � � (2.7)

for some quasi-increasing

�: [0, �] � [0, �]

satisfying

�(x) � 0, x � 0+.

Then,

(a)

En[ f ]W, p�C2 \|
C3(an�n)

0

�({)
{

d{+ , n � � (2.8)

and

|r, p ( f, W, t)�C4 \|
C5t

0

�({)
{

d{+ , t � 0+. (2.9)

Here the Cj , j=1, 2, 3, 4, 5 are positive and independent of t and n.

(b) In particular, if � satisfies

|
C6t

0

�({)
{

d{=O(�(t)), t � 0+
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then there exist Cj>0, j=7, 8 independent of t and n such that

En[ f ]W, p=O \� \C7

an

n ++ , n � � (2.10)

and

|r, p ( f, W, t)=O(�(C8 t)), t � 0+. (2.11)

We deduce the following analogue of Theorem 2.5.

Theorem 2.7 (Characterization Theorem). Let W # E, 0<:�r,
1�p��, f # Lp, W (R) and assume (1.10).

(a) Then the following are equivalent.

|r, p ( f, W, t)=O(t:), t � 0+. (2.12)

&Pn*
(r)8r

an�nW&Lp (R)=O \ n
an+

r&:

, n � �. (2.13)

(b) In particular, the following are equivalent.

|r, p ( f, W, t)=O(tr), t � 0+. (2.14)

&Pn*
(r) 8 r

an �nW&Lp (R)=O(1), n � �. (2.15)

Remark 2.8. (a) We believe that is unlikely that (2.5) and (2.6) should
hold with :=r. Indeed it seems that the characterization (2.15) is the better
replacement. We deduce that in the range for which |r, p ( f, W, ; ) and
|r+1, p ( f, W, ; ) have different behaviors, En[ f ]W, p yields information on
|j, p ( f, W, ; ) and &Pn*

( j )8 j
an �nW&Lp (R) yields information on |j, p ( f, W, ; )

for j=r and j=r+1.

(b) Concerning the relationship between |r, p ( f, W, ; ) and
|r+1, p ( f, W, ; ) we proved a Marchaud inequality in [2].

We now establish

Theorem 2.9 (Quasi r-Monotonicity of the Modulus). Let W # E,
0<p��, f # Lp, W (R), t # (0, D), r�1, and assume (1.10). Then there
exists C1>0 independent of f and t such that

|r+1, p ( f, W, t)�C|r, p ( f, W, t). (2.16)

2.3. Estimates and Existence of f (k), k�1

We are able to prove the following existence theorem.
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Theorem 2.10. Let W # E, 0 < p � �, f # Lp, W (R), n � n0 and
q=min(1, p). Moreover assume (1.10). Then if

:
�

j=1
\2 j&1n

a2j&1n +
kq

2 j=E2 j&1n[ f ]q
W, p<�

for some =>0 and positive integer k,

f (k)W # Lp (R)

and

&( f &Pn*) (k) 8k
an�nW&Lp (R)�C1 \ :

�

j=1
\2 j&1n

a2 j&1n +
kq

2 j=E2 j&1n[ f ]q
W, p+

1�q

. (2.17)

Remark 2.11. It is possible under our hypotheses to reformulate all our
results for n�r.

3. THE PROOFS OF THEOREMS 2.1 AND 2.3

In this section, we present the proofs of Theorems 2.1 and 2.3. To this
end, we require three lemmas. Our first lemma concerns the functions
au , _, 8t , and 9y, z .

Lemma 3.1. Let W # E. Then

(a) Given fixed :>1, we have uniformly for u>u0 ,

}a:u

au
&1 }tT (au)&1. (3.1)

(b) Given :>0 and #>1 we have uniformly for u�u0

(i)

Q(au)tuT (au)&1�2, (3.2)

(ii)

T (au)tT (a:u), (3.3)

(iii)

Q(a#u)
Q(au)

>1. (3.4)
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(c) There exists s0 and v0 such that for s # (0, s0) and v�v0 , we may
write s=av �v where v�v0 . Moreover,

_(s)=_ \av

v +=a;(v) (3.5)

where

v(1&=)�;(v)�v.

(d) Let a>1. Then there exists C1>0 such that for t�a�s�t and
0<t�D

1�
_(s)
_(t)

�1+
C1

T (_(s))
. (3.6)

Moreover, uniformly for s, t above and x # R

8s (x)t8t (x). (3.7)

(e) Given 0�s�t�D, there exists C>0 independent of s and t such
that

T (_(t)) \1&
_(t)
_(s)+�C log \2+

t
s+ . (3.8)

(f) Given u�v�u0 for some large enough but fixed u0 , there exists
positive constants Cj , j=1, 2 independent of u and v such that

(u�v)C1T (v)�
Q(u)
Q(v)

�(u�v)C2T (u). (3.9)

Proof. Part (a) is Lemma 2.2(d) in [4] while (3.2) is Lemma 2.2(b) in
[4]. (3.3) is (2.2) of [1] and (3.4) is (2.9) of [4]. (3.5) is Lemma 3.1(a)
of [4] and (3.6) is (2 14) of [1]. (3.7) is (2.18) of [1], (3.8) is (7.1) of [4],
and (3.9) is (2.1) of [4]. K

Our next lemma is an estimate of the function 8y, z defined by (2.2).

Lemma 3.2. Let W # E, =, :>0. Then there exists positive Cj , j=1, 2,
independent of s, t, and x such that for 0<s�t�D,

C1 \log \2+
t
s++

&:�2

�(sup
x # R

(9t, s (x)):�C2 \t
s+

=

. (3.10)
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Proof. The lower bound in (3.10) was established in (7.2) of [4]. Thus
it suffices to establish the corresponding upper bound. Firstly if |x|�_(t),
then the result follows by (3.5) of [4] since in this case

9t, s (x)�C1

for some positive constant C1 independent of s, t, and x. Thus we may
assume without loss of generality that |x|>_(t). We first claim that

8t (x)�C2 } 1&
|x|

_(2t) }
1�2

for some positive constant C2 independent of x and t.
To see this, first observe that (3.6) implies that

}1&
|x|

_(2t) }
1�2

�C3 max \} 1&
|x|

_(t) }
1�2

, T (_(t))&1�2+
for our range of |x|. Then using the estimate above yields

8t (x)�2�C3 } 1&
|x|

_(2t) }
1�2

.

Now using the estimate above, the triangle inequality and the definition
of 8s , we have

8t (x)� } 1&
|x|

_(s) }
1�2

+ } 1&
_(s)
_(2t) }

1�2

_} 1&
|x|

_(s) }
1�2

+1&
�C4 _8s (x)+\ _(s)

_(2t)+
1�2

} 1&
_(2t)
_(s) }

1�2

8s (x)&
+C4 _\_(s)

_(t)+
1�2

} 1&
_(2t)
_(s) }

1�2

T (_(2t))1�2 \ T (_(s))
T (_(2t))+

1�2

8s (x)&
�C5 \T (_(s))

T (_(t))+
1�2

\_(s)
_(t)+

1�2

�log \2+
2t
s + 8s (x),

where in the last line we used (3.8). We observe that the positive constant
C5 is independent of t, s, and x.

232 S. B. DAMELIN



We now estimate each of the terms in (3.11). Thus let =>0 be given. By
Lemma 3.1(c), we may write s=au �u and 2t=av �v where u�v�v0 and v0

is a large enough but fixed real number. Observe that

a;(u)=_(s)�_(2t)=a;v

with ;(u)�;(v), ;(u)=u(1+o(1)) and ;(v)=v(1+o(1)).
Then as T is quasi-increasing it follows from (3.2), (3.3), (3.4), and (3.9)

that

(u�v)�C6 (t�s)1�1&=. (3.12)

Now applying (1.1) with y=_(s) and x=_(2t) together with (3.2) and
(3.12) then yields

\T(_(s))
T(_(t))+

1�2

�C7 (t�s)=

and

\_(s)
_(t)+

1�2

�C8 (t�s)=.

Inserting these estimates into (3.11), recalling that logarithms grow slower
than any polynomial and dividing by 8s (x) yields the upper bound in
(3.10) and hence the lemma. K

Our final lemma concerns (1.13) and an extension of the Markov�
Bernstein inequality (1.10).

Lemma 3.3. Let W # E, r�1, 0<p��, f # Lp, W (R) and assume (1.10).

(a) Then if n�N0 and P # Pn , there exists C1 {C1 (n, P) such that

&P(r+1)8 r+1
an�n W&Lp (R)�C1

n
an

&P (r)8r
an�nW&Lp(R) . (3.13)

(b) Let 0<t<D and define n(t) by (1.13). Then uniformly for f, t,
and * # [1, D�t],

an(*t)

n(*t)
�*t<2

an(*t)

n(*t)
, (3.14)

Kr, p ( f, W, (*t)r)tKr, p \ f, W, \an(*t)

n(*t)+
r

+ , (3.15)
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and

|r, p ( f, W, *t)t|r, p \ f, W,
an(*t)

n(*t)+ . (3.16)

Proof. Part (a) appeared first in [1, Lemma 3.1]. Part (b) for *=1,
follows from [1, (2.25)], [1, (1.23)], and [1, (1.14)]. The general case
follows by replacing t by *t and using (1.15), (1.16), and (3.7). K

We are ready for the proofs of Theorem 2.1 and 2.3.
We begin with

The Proof of Theorem 2.1. Let t # (0, D), * # [1, D�t], =>0 and deter-
mine n(t) and n(*t) by (1.13). By (1.12) we may choose P # Pn(t) such that

&( f &P) W&Lp (R)+tr &WP(r)8r
t &Lp (R)�2Kr, p ( f, W, tr). (3.17)

Next by (1.11), (1.16), (1.18), and (3.16) we may choose R # Pn(*t) such
that

&(R&P) W&Lp (R)�C1wr, p \P, W,
an(*t)

n(*t)+
�C2wr, p (P, W, *t)�C3 (*t)r &P(r)W8r

*t &Lp (R) , (3.18)

where C3 {C3 ( f, t, *).
Similarly we obtain

(*t)r &WR (r)8r
*t &Lp (R)�C4 Kr, p (P, W, (*t)r)�C5wr, p (P, W, *t)

�C6 (*t)r &P(r)W8 r
*t &Lp (R) (3.19)

for some C6 {C6 ( f, t, *).
Let q=min(1, p). Then (1.12), (3.17), (3.18), and (3.19) yield

Kr, p ( f, W, (*t)r)q�C7 (&( f &R) W&q
Lp (R)+(*t)rq &R (r)W8r

*t&
q
Lp (R))

�C8 (&( f &P) W&q
Lp (R)+(*t)rq &P(r)W8 r

*t&
q
Lp (R))

�C9*rq(sup
x # R

9*t, t (x))rq Kr, p ( f, W, tr).

Here C9 {C9 ( f, t, *).
Taking q th roots and using (1.14) gives (2.1). (2.3) then follows using

(3.10). K

With Theorem 2.1 at our disposal, we may proceed with
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The Proof of Theorem 2.3. Our method of proof uses an idea from [8].
Choose t0 # [t, D]. We first show that (2.4) implies that

|r, p ( f, W, t0)=0. (3.20)

This follows as given =>0, we have by Theorem 2.1 that uniformly for
t # (0, D),

|r, p ( f, W, t0)=|r, p \ f, W,
t0 t
t +�C1

|r, p ( f, W, t)
tr+= ,

where C1 {C1 ( f, t).
We see now why it is crucial that (2.3) should hold uniformly for

* # [1, D�t].
Then (2.4) implies (3.20) and so (1.14) implies

Kr, p ( f, W, tr
0)=0. (3.21)

Here n=n(t0) is defined by (1.13). By (3.21), we may choose a sequence
of polynomials (Pi)

�
i=1 # Pn such that

&( f &Pi) W&Lp (R)+t r
0 &P (r)

i 8r
an�n W&Lp (R)�2&itr

0 . (3.22)

Then for a.e. x # R we have,

f (x)=Pi (x)+ :
�

j=i

(Pj+1&Pj)(x)

and so (3.21) and (3.22) give

& f (r)8r
an�nW&Lp (R)�C1 \2&i+ :

�

j=i

2&( j+1)+2& j+�C2 2&i. (3.23)

As (3.23) holds for each i�1, we must have

& f (r)8r
an�nW&Lp (R)=0,

which implies that for a.e. x # R

f (r)8r
an�nW(x)=0

or f is a polynomial of degree r&1 a.e. K
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4. OUR REMAINING PROOFS

In this section, we present the proofs of Theorems 2.6, 2.7, 2.9, and 2.10
following ideas from [5] and [8].

4.1. Characterization Theorem

We begin with

The Proof of Theorem 2.6. Let Pn*(P*2n) be the best approximant to P*2n

from Pn satisfying,

&(P*2n&Pn*(P*2n)) W&Lp (R)=En [P*2n]W, p . (4.1)

Then using (1.4),

I q
n :=&(P*2n&Pn*(P*2n)) W&Lp (R)�C(En [ f ]W, p&E2n [ f ]W, p) (4.2)

for some C{C(n, f ).
Also, by (1.11), (1.15), (1.18), (2.7), and (3.1),

In�C1 |r, p \P*2n , W,
an

n +�C2 � \a2n

2n + . (4.3)

Here, C2 {C2 (n).
Then (4.2) and (4.3) give

En [ f ]W, p�C3 :
�

k=0

I2kn�C4 :
�

k=1

� \a2kn

2kn+=C4 Sn , (4.4)

where

Sn := :
�

k=1

� \a2kn

2kn+ , n�1 (4.5)

and C4 {C4 (n).
We now estimate (4.5) in terms of an integral.
First observe using (3.1), that there exists n0 such that uniformly for

k�1 and n�n0 ,

|
a2

k&1
n�2k&1n

a2
kn�2kn

1
{

d{�
1
2

log 2.
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Then the quasi-monotonicity of � gives

Sn�C5 :
�

k=1
|

a2
k&1

n �2k&1n

a2
kn�2kn

�({)
{

d{, (4.6)

where C6 {C6 (n).
Substituting (4.6) into (4.4) gives (2.8).
Now let 0<t<D and define n :=n(t) by (1.13).
Then using (1.4), (1.14), (1.16), (2.7), (3.1), and (4.4), we proceed much

as in the proof of (2.8) and obtain

|r, p ( f, W, t)�C1 |r, p \ f, W,
a2n

2n +
�C2 Kr, p \ f, W, \a2n

2n +
r

+
�C3 \&( f &P*2n) W&Lp (R)+\a2n

2n +
r

&P* (r)
2n 8r

a2n �2nW&Lp (R)+
�C4 \E2n [ f ]W, p+� \a2n

2n ++
�C5 \ :

�

k=0

� \a2k+1n

2k+1n++�C6 |
C7 t

0

�({)
{

d{. (4.7)

Here C6 {C6 (t). Thus we have (2.9), (2.10) and (2.11) then follow
easily. K

We may proceed with

The Proof of Theorem 2.7. We apply Theorem 2.6 with �({) :={:. This
then shows that (2.13) implies (2.12). The other way follows from (1.14)
and (1.16). The equivalence of (2.14) and (2.15) follow from part (a) of
Theorem 2.7 by setting :=r. K

4.2. Existence Theorems and Monotonicity

In this section, we present the proofs of Theorems 2.9 and 2.10.
We begin with

The Proof of Theorem 2.9. Let q=min(1, p) and let Pn* be the best
approximant to f satisfying (1.17). Then (1.11), (1.12), (1.14), (1.16), and
(3.13) give for n�n0 ,
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|r+1, p \ f, W,
an

n +
q

�C1 \&( f &Pn*) W&q
Lp (R)+\an

n +
(r+1)q

&Pn*
(r+1)8r+1

an�n W&q
Lp (R)+

�C2 \En [ f ]q
W, p+\an

n +
rq

&Pn*
(r) 8r

an�nW&q
Lp (R)+

�C3 |r, p \ f, W,
an

n +
q

.

Here C3 {C3 ( f, n).
Now let 0<t<D and determine n :=n(t) by (1.13). Then (3.16) with

*=1 and (4.8) together imply (2.16). K

We finish this section with

The Proof of Theorem 2.10. Let Pn* be the best approximant to f satisfying
(1.17). Then much as in the proof of Theorem 2.3, we write for a.e. x # R,

f (x)=Pn*(x)+ :
�

j=1

(P*2 jn(x)&P*2 j&1n(x)). (4.9)

Now let =>0 and apply (4.9) together with (3.13), (3.10) and =�q. This
gives,

&( f &Pn*) (k) 8k
an�nW&q

Lp (R)�C1 :
�

j=1

2 j= \2 jn
a2 jn+

kq

&(P*2 jn&P*2 j&1n) W&q
Lp(R)

�C2 :
�

j=1
\2 j&1n

a2 j&1n +
kq

2 j=E q
2 j&1n[ f ]W, p .

Here, C2 {C2 (n, f ). Taking q th roots gives the theorem. K
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